GIA SƯ PHÙNG ANH – HÀ NỘI

Luyện thi đại học – Gia sư tại nhà – Gia sư tại Hà Nội

Tag Archives: ứng dụng đạo hàm

Sáng kiến kinh nghiệm – Lớp 11 – Lớp 12 – Các dạng toán viết phương trình tiếp tuyến


     Chúng ta biết rằng: dạy học toán là dạy cho người học có năng lực trí tuệ, năng lực này sẽ giúp họ học tập và tiếp thu các kiến thức về tự nhiên và xã hội.Vì vậy, dạy toán không chỉ đơn thuần là dạy cho học sinh nắm được kiến thức, những định lý toán học.Điều quan trọng là dạy cho học sinh có năng lực, trí tuệ. Năng lực này sẽ được hình thành và phát triển trong học tập.Vì vậy cần giúp học sinh phát triển năng lực trí tuệ chung, bồi dưỡng thế giới quan  duy vật biện chứng.

   Trong xu thế chung những năm gần đây, viêc đổi mới phương pháp dạy học là vấn đề cấp bách, thiết thực nhất nhằm đào tạo những con người có năng lực hoạt động trí tuệ tốt. Đổi mới phương pháp dạy học không chỉ trong các bài giảng lý thuyết, mà ngay cả trong các giờ luyện tập. Luyện tập ngoài việc rèn luyện kỹ năng tính toán, kỹ năng suy luận cần giúp học sinh biết tổng hợp, khái quát các kiến thức đã học, sắp xếp các kiến thức đã học một cách hệ thống, giúp học sinh vận dụng các kiến thức đã học vào giải bài tập một cách năng động sáng tạo.

    Có thể nói, bài toán viết phương trình tiếp tuyến của hàm số là bài toán cơ bản và thường gặp trong các kì thi tốt nghiệp THPT và tuyển sinh ĐHCĐ trong những năm gần đây,thế nhưng không ít học sinh còn lúng túng không có cái nhìn thấu đáo vế bài toán này, các em thường không nhận dạng được bài toán và chưa có phương pháp giải toán cho từng dạng toán cũng như khả năng phân tích đề còn nhiều khó khăn.

   Sở dĩ học sinh chưa làm được bài tập viết phương trình tiếp tuyến của hàm số là vì:

 - Thứ nhất:  Bài toán viêt phương trình tiếp tuyến được trình bày ở cuối chương trình 11 nên nhiều học sinh đã quên phương pháp cho từng bài toán.

 - Thứ hai: Các em thiếu nhiều bài tập để rèn luyên kĩ năng phân tích và trình bày bài toán.

- Thứ ba: học sinh chưa có được phương pháp khái quát các bài toán thường gặp về  viết phương trình tiếp tuyến của hàm số.

          Chính vì vậy, đã thôi thúc tôi tìm hiểu và viết đề tài Một số bài toán thường gặp về viết phương trình tiếp tuyến của đồ thị hàm số ” nhằm giúp các em học sinh nắm chắc được kiến thức về bài toán viết phương trình tiếp tuyến của đồ thị hàm số, để các em có sự chuẩn bị tốt cho các kỳ thi tốt nghiệp PTTH và ĐHCĐ.

Tài liệu tham khảo trên mạng.

Các bạn vào đây lấy đề tài sáng kiến kinh nghiệm!

Sáng kiến kinh nghiệm – Lớp 11 – 12 – Ứng dụng đạo hàm và ẩn phụ để tìm tham số trong bài toán phương trình, bất phương trình (File word)


Các bạn vào đây để lấy tài liệu sáng kiến kinh nghiệm về tham khảo! (định dạng File Word)

Các bạn có tài liệu nào muốn chia sẻ xin hãy gửi cho tôi vào hòm thư: nguyenvanphung.hnue@gmail.com.

Tài liệu của các bạn, các thầy/cô sẽ được chia sẻ trực tiếp trên trang này!

Rất hy vọng nhận được sự hợp tác chân thành của quý thầy cô và các bạn!

1.Cơ sở thực tiễn của vấn đề nghiên cứu

    Trên thực tế học sinh THPT đã được học rất nhiều dạng toán về PT, BPT và hệ PT cụ thể là : Lớp 10 có PT, BPT, hệ PT quy về bậc hai, chứa ẩn dưới dấu căn và chứa ẩn dưới dấu giá trị tuyệt đối. Lớp 11 có PT lượng giác. Lớp 12 có PT, BPT, hệ PT mũ và logarit. Trong đó có khá nhiều dạng bài toán cần phải thực hiện phương pháp đặt ẩn phụ khi tiến hành lời giải và hầu hết đó là các bài toán không chứa tham số. Tuy nhiên trong các đề thi tuyển sinh Đại học và đề thi học sinh giỏi thường có các bài toàn đề cập đến PT, BPT chứa tham số hoặc tìm GTLN, GTNN mà khi tiến hành lời giải thì phải đặt ẩn phụ và tìm ĐK của ẩn phụ.

    Với mười năm làm nghề dạy học tôi đã may mắn được tham gia giảng dạy cho khá nhiều lớp ôn thi Đại học và ôn thi học sinh giỏi tôi thấy có một số vấn đề cần phải giải quyết:

    Một là: Việc biến đổi PT, BPT hoặc đặt ẩn phụ để quy PT đã cho về các PT bậc cao thì học sinh được giải quyết khá nhiều ở lớp 10 và lớp 11,  nhưng khảo sát hàm số bằng cách ứng dụng đạo hàm thì đến lớp 12 mới được học nên khi làm bài cần phải kết hợp hai việc trên với nhau thì học sinh rất lúng túng nên lời giải nhiều khi không chặt chẽ.

    Hai là: Khi học sinh làm bài tập về PT, BPT hoặc tìm GTLN, GTNN của biểu thức có ĐK mà trong lời giải có bước đặt ẩn phụ thì tôi thấy nhiều học sinh mắc phải một trong những sai lầm: hoặc là đặt ẩn phụ mà không nghĩ đến tìm ĐK của ẩn phụ hoặc tìm sai ĐK của nó, hoặc đã tìm chính xác ĐK của ẩn phụ nhưng khi lập luận trên PT, BPT theo ẩn phụ thì lại không xét trên ĐK ràng buộc của nó nên dẫn đến kết luận không chính xác.

   Ba là: Từ năm 2006 sách giáo khoa không nói đến định lý đảo về dấu tam thức bậc hai, trong khi đó sách tham khảo xuất bản trước đó có rất nhiều bài toán sử dụng định lý đó để thực hiện việc so sánh các nghiệm của một tam thức bậc với các số cho trước nên học sinh đọc sách rất hoang mang. Do đó người giáo viên phải định hướng cho học sinh biến đổi về bài toán sử dụng đạo hàm để khảo sát hàm số nếu là tình huống không thể giải quyết đơn thuần theo kiểu tính biệt thức đenta.

Tài liệu sáng kiến kinh nghiệm này là của thầy: Nguyễn Hà Hưng – Mỹ Đức.

%d bloggers like this: